Retour en haut

TraceParts apporte son soutien à l’université de Stanford pour un projet de recherche portant sur la conversion de données numérisées en CAO

18/04/2019 13h53, par Audrey VARIN

TraceParts apporte son soutien à l’université de Stanford pour un projet de recherche portant sur la conversion de données numérisées en CAO

La bibliothèque de modèles CAO de TraceParts est mise à la disposition des chercheurs du département d’informatique de l’université de Stanford, aux États-Unis.

Saint-Romain, France, 18 avril 2019. Une équipe de l’université de Stanford a travaillé sur un projet de recherche visant à générer des modèles CAO à partir de données 3D numérisées.

Minhyuk Sung, doctorant en informatique à l’université de Stanford, bénéficiant des conseils de Leonidas Guibas, professeur d’informatique à Stanford, a proposé un nouveau système de numérisation vers CAO, en paramétrant un nuage de points 3D numérisé avec de multiples primitives géométriques, incluant plan, sphère, cylindre et cônes. Grâce aux primitives de sortie, les utilisateurs peuvent facilement manipuler les données numérisées dans de nombreuses applications en aval telles que l’édition de formes.

Figure 1. La méthode prend les données brutes d’un nuage de points 3D numérisé et les convertit en un ensemble de primitives géométriques, y compris pour des segments minuscules. Les primitives de sortie peuvent être utilisées dans de nombreuses applications telles que l’édition de formes.

Dans leur recherche, l’objectif est de concevoir un système stable et entièrement automatique, fonctionnant sans aucun contrôle de l’utilisateur. Les techniques existantes d’adaptation des primitives au nuage de points d’entrée incluent les paramètres utilisateur, dont l’ajustement pour chaque entrée est crucial pour les performances. L’équipe évite ce problème et automatise le processus d’ajustement en introduisant un système basé sur l’apprentissage approfondi qui prédit les informations de haut niveau à partir des données d’entrée et estime les primitives plus précisément en fonction de ces informations.

La prédiction dans le processus découle de l’entraînement d’un réseau neuronal avec supervision dans une base de données CAO à grande échelle, qui est fournie par TraceParts. La figure ci-dessous montre une comparaison entre l’approche existante (1re ligne) et la méthode proposée (2nde ligne). Le système proposé basé sur l’apprentissage approfondi est capable de traiter des cas difficiles avec une plus grande fiabilité ; par exemple, les deux cylindres adjacents à l’extrémité droite, avec des rayons légèrement différents (vert et bleu clair), ne sont pas bien reconnus en utilisant la technique existante, mais sont correctement distingués par la nouvelle méthode.

Figure 2. Comparaison entre les résultats de la technique existante (1re ligne) et de la méthode proposée (2nde ligne). Les primitives qui sont très proches les unes des autres peuvent être facilement confondues, mais la méthode basée sur l’apprentissage peut traiter ces cas de manière plus fiable et précise.

"Pour mener à bien cette recherche, nous avions besoin d’une base de données CAO à grande échelle que nous pourrions utiliser dans notre projet. Nous avons découvert la bibliothèque gratuite de modèles CAO en 3D de TraceParts. L’équipe de TraceParts nous a invité à utiliser leur API pour créer notre application et ainsi connecter leur base de données CAO à notre application. L’accès à la base de données TraceParts est pour nous une formidable opportunité, car elle est immense et suffisamment diversifiée. C’est parfait pour soutenir plusieurs projets de recherche."

                                                                                                explique Minhyuk Sung à propos de la bibliothèque TraceParts.

Outre Minhyuk Sung et Leonidas Guibas, l’équipe de recherche comprend Lingxiao Li, Anastasia Dubrovina et Li Yi à l’université de Stanford. Ce travail de recherche sera présenté à la CVPR 2019, conférence sur la vision par ordinateur de haut niveau, qui se tiendra à Long Beach, en Californie, du 16 au 20 juin 2019.

 

À propos de TraceParts

TraceParts est l’un des principaux fournisseurs mondiaux de contenu numérique 3D pour l’ingénierie. Appartenant au groupe Trace fondé en 1990, l’entreprise fournit de puissantes solutions web, telles que des bibliothèques de composants CAO, des catalogues électroniques et des configurateurs de produits.

TraceParts propose des services de marketing numérique pour aider les fabricants de composants, les fournisseurs d’impression 3D, les éditeurs de logiciels et les fournisseurs de matériel informatique à promouvoir leurs produits et services et à générer des prospects B2B de grande qualité.

Le portail TraceParts est accessible gratuitement à des millions d’utilisateurs CAO dans le monde entier. Il donne accès à des centaines de catalogues de fournisseurs et à plus de 100 millions de modèles CAO et fiches techniques qui répondent parfaitement aux besoins spécifiques des processus et des opérations de conception, d’achat, de fabrication et de maintenance.

Réagir sur cette actualité d'électronique

Les dernières infos électronique

16/05/2019 07h42 : Sepro Group et Universal Robots annoncent un nouveau partenariat dans le domaine de la cobotique
02/05/2019 19h16 : WeAreCOBOTS, le premier congrès sur la robotique collaborative organisé en Espagne et inauguré par Universal...
30/04/2019 19h11 : Analog Devices annonce la nomination de Dan Leibholz au poste de directeur technique (CTO)
25/04/2019 18h10 : TraceParts atteint un nouveau record avec 3,5 millions d'utilisateurs enregistrés
24/04/2019 17h42 : PCIM 2019 : Analog Devices présente ses toutes dernières solutions de conversion d’énergie et de gestion de ...
18/04/2019 13h53 : TraceParts apporte son soutien à l’université de Stanford pour un projet de recherche portant sur la convers...
08/04/2019 11h45 : À l’occasion d’une table ronde organisée en présence de représentants du ministère américain du Commerce, An...
31/03/2019 17h57 : Universal Robots participe au SIDO 2019 pour y présenter sa vision et ses solutions de robotique collaborati...
18/03/2019 20h22 : Analog Devices se hisse à la 17e place au classement des 100 entreprises les plus performantes au monde en m...
18/03/2019 20h15 : Foire de Hanovre 2019 : Analog Devices met l’accent sur la sécurité au cœur de l’univers entièrement connect...
13/03/2019 19h05 : Universal Robots profite du salon CFIA pour annoncer un partenariat avec le distributeur breton Sterkelec
12/03/2019 09h51 : WATTS présente son nouveau Thermostat de la gamme Vision®

Actualité électronique

A lire aussi